A quantitative trait loci-specific gene-by-sex interaction on systolic blood pressure among American Indians: the Strong Heart Family Study.
نویسندگان
چکیده
Age-adjusted systolic blood pressure is higher in males than females. Genetic factors may account for this sex-specific variation. To localize sex-specific quantitative trait loci (QTL) influencing blood pressure, we conducted a genome scan of systolic blood pressure, in males and females, separately and combined, and tested for aggregate and QTL-specific genotype-by-sex interaction in American Indian participants of the Strong Heart Family Study. Blood pressure was measured 3 times and the average of the last 2 measures was used for analyses. Systolic blood pressure was adjusted for age and antihypertensive treatment within study center. We performed variance component linkage analysis in the full sample and stratified by sex among 1168 females and 726 males. Marker allele frequencies were derived using maximum likelihood estimates based on all individuals, and multipoint identity-by-descent sharing was estimated using Loki. We detected suggestive evidence of a QTL influencing systolic blood pressure on chromosome 17 at 129 cM between markers D17S784 and D17S928 (logarithm of odds [LOD] = 2.4). This signal substantially improved when accounting for QTL-specific genotype-by-sex interaction (P = 0.04), because we observed an LOD score of 3.3 for systolic blood pressure in women on chromosome 17 at 136 cM. The magnitude of the linkage signal on chromosome 17q25.3 was slightly attenuated when participants taking antihypertensive medications were excluded, although suggestive evidence for linkage was still identified (LOD = 2.8 in women). Accounting for interaction with sex improved our ability to detect QTLs and demonstrated the importance of considering genotype-by-sex interaction in our search for blood pressure genes.
منابع مشابه
Mapping of a blood pressure QTL on chromosome 17 in American Indians of the strong heart family study
BACKGROUND Blood pressure (BP) is a complex trait, with a heritability of 30 to 40%. Several genome wide associated BP loci explain only a small fraction of the phenotypic variation. Family studies can provide an important tool for gene discovery by utilizing trait and genetic transmission information among relative-pairs. We have previously described a quantitative trait locus at chromosome 17...
متن کاملEvidence for a gene on chromosome 13 influencing postural systolic blood pressure change and body mass index.
Previous analysis in the Hypertension Genetic Epidemiology Network (HyperGEN) of the National Heart Lung and Blood Institute (NHLBI) Family Blood Pressure Program, a multicenter study of genetic and environmental factors related to hypertension, indicated regions of linkage for blood pressure traits together with several coincident regions for phenotypically correlated traits, including systoli...
متن کاملGeneralization of associations of kidney-related genetic loci to American Indians.
BACKGROUND AND OBJECTIVES CKD disproportionally affects American Indians, who similar to other populations, show genetic susceptibility to kidney outcomes. Recent studies have identified several loci associated with kidney traits, but their relevance in American Indians is unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This study used data from a large, family-based genetic study of A...
متن کاملQTL mapping of leukocyte telomere length in American Indians: The Strong Heart Family Study
Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by...
متن کاملIdentification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2006